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Motivation

e Experimental data presented at the last MACCCR Meeting by Jackie Sung
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Questions?
e How accurate is the local strain rate, reference velocity, ...?

e Can we use an alternate counterflow flame property for optimization and
validation of chemical kinetic models?
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Questions?

e How accurate is the local strain rate, reference velocity, ...?

e Can we use an alternate counterflow flame property for optimization and
validation of chemical kinetic models?

Extinction Strain Rate of Nonpremixed Flames
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Outline
e A brief review

e Uncertainties of experimental data:
— premixed flames (last MACCCR Fuels Meeting at NIST)
— non-premixed flames (eg. ethylene-air data of USC, NASA Langley, and
UVa)

e Two-dimensional effects?
— LDV and PIV data
— UNICORN simulations by Katta

e Mechanism reduction based on principal component/QSSA analyses

e Concluding remarks
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Review - Free-floating Limit

e |deal, free-floating counterflow field for L/ D > 2

Free floating flow field (ideal) }3_:_' 3
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|deal case
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Review - Free-floating Limit

e Non-ideal counterflow field for L/ D < 1
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Review - Influence of Nozzle Exit Profile

e Non-ideal separation distance effect on nozzle exit velocity profile
e First demonstrated by Rolon et al. in early 1990’s.
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Review - Influence of Radial Boundary Condition

e Finite v, /0r (=

U) (Chelliah et al., 23rd Symp., 1990, Smooke et al. 1990)

e Axial velocity of methane-air non-premixed flames near extinction
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Outline
e A brief review

e Uncertainties of experimental data:
— premixed flames (last MACCCR Fuels Meeting at NIST)
— non-premixed flames (eg. ethylene-air data of USC, NASA Langley, and
UVa)

e Two-dimensional effects?
— LDV and PIV data
— UNICORN simulations by Katta

e Mechanism reduction based on principal component/QSSA analyses
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Uncertainties — Burning Velocity of Premixed Flames

e Three key uncertainties

(1) local strain rate,
(i) linear vs. non-linear extrapolation (Stahl, Warnatz, and Rogg, 1988).
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Some Definitions of Nonpremixed Flame Characteristics

e Global Strain Rate agiopa; = 4 Vair/ L (Seshadri and Williams, 1978)
where v4; from (i) Volume/Area, (i) LDV/PIV, and (iii) computations.

500 T I
O  Experimental
— Quasi 1D U=Finite

400 | = = = Quasi 1D U=0

300 b

200 N
@
5 100 Local strain rate: 7
P Experiments = 1160s ™
S of i
o
>
‘© -100f .
=
<

-200 b

Global extinction strain rate
-300
400l Exit velocity based on Vol/Area = 342 cm/s )
(corresponding global strain rate =1710s )
_500 | | | | | | |
-04 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
R}VERSITY Axial Distance [cm]
=" VIRGINIA MACCCR Fuels Meeting at USC September 2009 — 10 / 25

LY ENGINEERING



Extinction limit of ethylene-air Nonpremixed Flames

e ONE key uncertainty = measurement of strain rate!

e Experiments from
USC, NASA Langley,
and UVa.

e Chemical Kkinetic
models of Wang and
co-workers.

e Full Stefan-Maxwell
Eq. to reduce uncer-
tainty of diffusion
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Influence of U = 0 vs. U = Finite on Local Strain Rate

o dv,/dz + 2pU(z) = 0 (Kee et al. 1988, Smooke et al., 1990)
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Summary of Experimental Data and Uncertainties

e Particle seeding in LDV/PIV = lower local strain rate?
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Outline
e A brief review
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2D Axisymmetric Computations

e Amantini et al. (2007) considered a methane-air case
e Vish Katta’s UNICORN code with USC Mech Il Optimized for ethylene-air
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Principal Component Analysis with Sensitivity (PCAS)

e Starting point of PCAS is the construction of response function (Vajda, Valko,
and Turanyi (1985)):

! f’L y fZ( 7PO)
:ZZ[ zj, P x]7POa;J

j=1 i=1

where P, P9 are unperturbed and perturbed parameters (k = 1,...,p); f; a
set of target functions (z = 1, ..., m); x; collection of analysis points

=1 ..9).

e Around P9, the response function can be approximated as:

Q(P) ~ q(P) = (AP)! STS(AP) = (AP)! UTAU(AP) = zp: A (AW)?
k=1

where AP = P — P?; S collection of sensitivity matricies; \;, eigenvalues; U
normalized eigenvectors; AW = U’'P principal components.
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Application of PCAS to Ignition Delay

e Several key issues!!!
e Ethylene-air, p=1.0atm, ¢=1.0 with Wang 2003 detailed model (71 species in

467 reactions)
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Application of PCAS to Flame Propagation

e Ethylene-air, p=1.0atm, 71=300 K with Wang 2003 detailed model (71
species in 467 reactions)
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Application of PCAS to Flame Extinction

e Ethylene-air, p=1.0atm, 71p=300 K

Extinction Curves
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QSSA Reduction Approach

e QSSA Reduction Approach — Zambon and Chelliah, Combustion and
Flame (2007) — 15-step and 18-step reduced reaction models for ethylene-air
based on a 31 species and 128 reaction skeletal model from Wang 2003.

e In the process of updating based on USC Mech Il Optimized.

R}VERSITY
IRGINIA MACCCR Fuels Meeting at USC September 2009 — 22 / 25

!m | ENGINEERING |



NIST Chemical Kinetics Database Program

e Extremely useful tool to analyze differences between chemical kinetic
models (Don Burgess)
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Concluding Remarks

e In quasi 1D extinction limit computations, U = 0 and U = finsite (from
actual experiments) differ by nearly 10%!!!

e In extinction experiments with convergent nozzles, L /D = 1 case shows a
non top-hat velocity profile = main contributor to the differences between
the measured local strain rate and the global strain rate

e Random errors (1160 £20) are too large to extract any systematic
uncertainty associated with L/ D variation

e detailed reaction models continue to evolve and may converge through
collaborative based efforts like PrIME, this Fuels Group, ...

— need to create accurate and independent experimental data with
well-defined uncertainties

e automated reduction procedures are needed to take advantage of the
evolving detailed reaction models (PCAS/QSSA, ...)
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